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On the complex angular momentum theory of scattering 
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Fachbereich Physik, Universitat Kaiserslautern, D-6750 Kaiserslautern, West Germany 

Received 25 August 1982 

Abstract. A contribution to the theory of complex angular momentum techniques in the 
field of atomic and molecular collisions is given. We derive a new, flexible representation 
of the scattering amplitude on the basis of realistic assumptions for the behaviour of the 
S matrix in the complex angular momentum plane. The representation has the form of 
a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type back- 
ground integral. The flexibility is due to the presence of two integer parameters which 
may be chosen conveniently so as to make the residue sums sufficiently convergent and 
to minimise the total number of important terms. 

1. Introduction 

The scattering amplitude f(0) is a quantity of basic importance in the theory of elastic 
collisions between particles with an isotropic interaction. Several analytical methods 
for its computation are developed in standard texts on the subject. In the present 
paper we discuss some fundamentals of frequently employed real and complex angular 
momentum descriptions of atomic and molecular collisions. Our results are particularly 
closely related to three exact representations of the scattering amplitude: the partial- 
wave representation, the Poisson and Regge representations. 

Let us first consider the quantum-mechanical partial-wave representation given by 

where k is the wavenumber of relative motion, SI  a scattering matrix element and 
Pf(cos 0) a Legendre polynomial. The expansion (1.1) is certainly useful when only 
a few partial waves contribute. However, for many collisions, typically involving heavy 
particles, this series is known to be slowly convergent and tedious for practical 
calculations. Furthermore, when a great number of partial waves contribute, it 
becomes hopeless to characterise the esential properties of f ( 0 )  by individual terms 
in ( l . l ) ,  since collective effects are unavoidable. The need for analytical techniques, 
which effectively sum the important contributions in the partial-wave series to a 
relatively small number of resulting terms, appears obvious. It is with this goal in 
mind that we shall examine the Poisson and Regge representations as alternatives to 
(1.1). 

The one which is best understood so far is the Poisson representation (see Berry 
and Mount (1972) and Connor (1980)): 

i +m 

f(0) = k  (-1)" (1 -S(A))P, - t  (cos e)  exp (2in.rrA)A dA (1.2) 
f l=-m 
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where A = I + $  is introduced as a continuous variable such that S(A)=Sl and 
PA-; (cos8) is a Legendre function of the first kind. The formula (1.2) has in fact 
been used as a starting point for the approximate, semiclassical trajectory description 
of elastic collisions and has, with few exceptions, proved to be rapidly convergent 
when the representation (1.1) converges slowly. Often only one term ( n  = 0) in (1.2) 
yields sufficiently accurate results. Exceptions may occur at energies which allow the 
formation of long-lived states (orbiting or resonances) of the interacting particles. 
Then again the evaluation of f ( 0 )  becomes cumbersome. 

An investigation by Bosanac (1979) suggests, instead, that orbiting and resonance 
features are well described within a Regge, or complex angular momentum representa- 
tion. In this representation (see also Connor 1980) one utilises the analytical properties 
of the terms in the original partial-wave sum, which is suitably converted, via a Watson 
transform, into a contour integral plus an infinite sum involving the S- matrix residues 
rm at the pole positions A,. Thus 

1 A i.rr OC A m  
f (0)  = -- (1 -S(A))PA,-; ( -COS e) - dA -- rmPAm-; (-cos 8 )  -- 

2k  jr COS T A  k m=O COS TA,  
(1 .3)  

where r is a path along the imaginary A axis in the negative direction, with a slightly 
deformed lower part for strongly singular potentials (see figure l), and the poles are 
all in the first quadrant. In order to consider (1.3) as an appropriate representation 
of f(f?), one requires that the residue sum converges rapidly (compared with the sums 
in (1.1) and (1.2)) and that the contour integral can be evaluated conveniently. 
According to Bosanac ( 19791, these conditions are satisfied in orbiting collisions for 
a wide angular range, not too close to the forward direction. Other favourable 
situations are also encountered (see Connor 1980). Among the known deficiences of 
(1.3) we shall mention only one, concerning rainbow scattering in atomic collisions, 

Figure 1. The figure illustrates schematically the lccation in the half-plane Re A > 0 of 
poles ( x )  and zeros (0) of the S matrix for an absorptive Lennard-Jones potential. An 
infinite number of poles and zeros lie along strings, which extends towards infinity in the 
first and fourth quadrants, respectively. The magnitude of the S matrix varies strongly 
in the neighbourhood (indicated by the broken curves) of these strings. The integration 
paths rL, r and C are depicted. Integrals which are defined on C may be evaluated by 
residue sums. 
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which has been studied by Delos and Carlsson (1975) and Connor and Jakubetz 
(1978). In that context, serious difficulties in reproducing prominent rainbow features 
are encountered, because many terms in the residue sum are very large compared 
with f(8) itself, such that considerable cancellation occurs by the summation. On the 
other hand, the very same features are conveniently described by the use of the 
Poisson representation (1.2), from which the well known Airy approximation is derived 
(Connor 1980). 

Apparently, a full understanding of the usefulness of the complex angular momen- 
tum representation has not yet been reached. Systematic research (along the lines of 
Connor et a1 (1979, 1980)) concerning the behaviour of poles, A,, and residues, r,, 
as functions of energy and interaction parameters is particularly important. The effects 
produced by complex optical-model potentials should also be investigated further. 

In the present paper we shall develop a quite general complex angular momentum 
representation which comprises both the semiclassical trajectory description implied 
by (1.2) and the Regge pole analysis of (1.3). The derivation is exact and is based 
on realistic assumptions of the behaviour of the S matrix in the right-hand complex 
A plane. The paper proceeds as follows. 

In § 2 we outline the basic idea of a Regge pole theory, defining the S matrix, due 
to a complex interaction potential, for complex angular momenta. 

Section 3 is devoted to the study of the S matrix in the complex A plane. General 
properties valid for local complex potentials are established. Thus, an extended 
u'nitarity condition is given and a reflection symmetry for strongly singular potentials 
is found. The distribution of poles (and zeros) of the S matrix is discussed. 

A transformation of the partial-wave series (1.1) is made in 9 4. The procedure 
is based on analytical properties of the S matrix known for the class of strongly 
singular potentials, e.g. of the Lennard-Jones type. We end up with a flexible complex 
angular momentum representation, involving steepest-descent integrals, residue sums 
and a symmetry-type background integral. 

The results are summarised briefly in 9 5 and some relations for Legendre functions 
are listed in the appendix. 

2. The complex angular momentum 

The basic idea in existing complex angular momentum theories rests on the observation 
that the radial Schrodinger equation depends in a simple way on the angular momentum 
quantum number 1, so that one can analyse its solutions for the continuous and even 
complex values of 1. This mathematical technique provides a new device for analysing 
scattering experiments which also yields a great deal of physical insight. Early develop- 
ments of complex angular momentum theories for non-relativistic potential scattering 
(e.g. Newton 1964, de Alfaro and Regge 1965) are nicely summarised by Nussenzveig 
(1972). 

In the present treatment we shall always assume that the wavenumber k of relative 
motion is real and positive. However, we shall allow the physical model potential 
U(r )  to be a complex function of the relative distance r of the colliding particles. The 
scattering process in the presence of a complex potential is described by the radial 
Schrodinger equation 

r (2.1) 
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where conventional notations are used. Restrictions will be imposed on the potential 
in order to avoid special topics. Thus we exclude non-analytic potentials in the range 
r 7 0 ,  as well as the presence of Coulombic tails in U(r) .  Furthermore, we cannot 
allow potentials which are purely attractive and strongly singular at the origin (cf 
Frank et a1 1971). More precisely, we impose the conditions 

~ i m  larg {r2U(r) + ~ ) l  < T all S > 0 (2.3) 
, + + O  

where in (2.3) we understand the branch ( -T,  T )  of arg { }. The presence of the 
positive quantity S in (2.3) is necessary to allow for purely attractive and weakly 
singular potentials at the origin. Unless otherwise stated, U(r )  may assume arbitrary 
complex values for r > 0. 

The regular solution of (2. l),  fulfilling the boundary condition 

41 (0) = 0 (2.4) 

4 [ ( r )  - exp (-ikr + i i ln) -SI exp (ikr - ;UT). (2.5) 

at the origin, can be normalised such that its asymptotic form is 

r - + a  

Here SI defines the element of the elastic scattering matrix (or S matrix) in some 
region of the complex I plane containing the non-negative integers 1 = 0, 1, . . , . When 
regular or weakly singular potentials are considered, we must in general restrict I to 
the half-plane R e i > - $  (see chapter 9 of Sitenko 1971). For strongly singular 
potentials, however, the conditions (2.4) and (2.5) can be satisfied without any 
restrictions on the complex values of I (de Alfaro and Regge 1965). This point is 
met again in 5 3. 

It is well known from standard texts that the elastic scattering amplitude f ( 0 )  for 
complex potentials can also be obtained from the value of Sf at the non-negative 
integers 1 = 0, 1 , 2 , .  . . in accordance with formula (1 .1) .  With the knowledge of { ( e )  
one simply obtains the differential cross section I ( @ )  and the total cross section U 
according to the formulae 

w) = lf(e)12 (2.6) 
and 

4T 
k 0-0 

U = - lim (Imf(0)).  

In our approach we shall transform (1.1) with the aid of the Poisson sum formula 
m +m 2 g ( l )  = 1 g(A -$) exp (2innh) dA 

f = O  n = -m 

(see Morse and Feshbach 1953) which yields the Poisson representation (1.2) directly. 
We then proceed further, in an exact manner, utilising more fully the analytical 
properties of the summand. In doing so, we must in 8 3 make some preliminary 
studies of the behaviour of the S matrix in the complex I plane (or A plane) and we 
shall later take for granted the standard generalisation of the polynomials Pf (cos 0)  
for 1 = 0, 1, . . . to the Legendre functions of complex degree (see the appendix). 
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3. The S matrix 

We shall start by establishing bounds for the S matrix in different regions of the 
complex 1 plane, providing us with information about the location of possible poles 
and zeros there. For this purpose, a suitable exact formula which displays the essential 
dependence of lSll on the imaginary part of U(r )  and on the complex value of I will 
be derived. To this end, we consider the radial Schrodinger equation (2.1) together 
wth its complex conjugate, i.e. 

for r 3 0 and k > 0. Unless otherwise stated, we restrict the values of 1 to the half-plane 
Re 12 -t. However, if the potential is not strongly singular at the origin, one must 
carefully modify the present treatment on the line Re 1 = -1. Our regular solution 
r$? (r) satisfies the conditions (cf (2.4) and (2.5)) 

dJ7 (0) = 0 (3.2) 

(3.3) 4;C(r) r++m - exp (ikr -$inl*)-ST exp (-ikr +iini*). 

We may form, with the aid of (2.1) and (3.1), the equality 

(3.4) 

which we integrate from zero to infinity, using (2.41, (2.51, (3.2) and (3.3), to yield 
the final expression 

2 
/ S I /  = exp (-27rIm I )  + k-' exp (-nIm I )  [Im U ( r )  + 2 (Re 1 + 1) Im l/r2]14f12 dr. 

(3.5) 
Let us consider real potentials, recalling that k > 0 and Re 1 2  --i. Equation (3.5) 

then reduces to 

which on the real I axis further simplifies to the well known unitarity property for the 
S matrix: 

(3.7) 
Obviously, for a scattering state ( k  > 0) no poles or zeros are located on the real axis. 

Below the real 1 axis, IS# is not larger than the first term on the right-hand side 
of (3.6), i.e. 

(Im 1 < 0) 

(Re I = -' 2 ) .  

lSrl= 1 (Im I = 0). 

IS11 c exp (-nIm I )  
lSfl= exp (-7 Im I )  (3.8) 

Above the real 1 axis, on the other hand, we obtain a lower bound for the S matrix, 

(Im I > 0) 

namely 

ISf I 2 exp (-nIm I )  

/ S i ]  = exp(-nIm I )  (Re 1 = -' 2). (3.9) 
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Hence possible poles must be located above the real I axis and in the half-plane 
Re I > -;, where at the same time no zeros are present. 

When an imaginary part is introduced in the potential, we must resort to the 
formula (3.5). One finds the following general theorems. 

If, for a given I such that Im 1 s 0, the complex potential satisfies the condition 

(3.10) 

then also 

ISI\ s exp (-rrIm 1) .  (3.11) 

Furthermore, if for a given I such that Im I s- 0, the potential satisfies 

(3.12) 

then also 

ISI/ a e x p  (-.nIm I). (3.13) 

In particular, for purely absorptive potentials, i.e. Im U(r )  s 0 (r 2 0), we conclude 
that all possible poles lie above the real I axis. However, the zeros are no longer 
forced to lie below the real axis, as was the case for real potentials (cf (3.7)-(3.9)). 
Thus it is possible that some zeros are situated on the real I axis and/or above it, 
and then they may cause drastic changes in the S-matrix element in (1.1). Indeed, 
in heavy-ion scattering problems (see, e.g., Niirenberg and Weidenmiiller 1976, 
McVoy 1971) these zeros may be responsible for diffraction oscillations in the differen- 
tial cross section I ( @ ) .  It is interesting to note that the upward displacement of the 
zeros is not a general feature implied by absorptive potentials. Connor et a1 (1979) 
and Thylwe (1981) have showr? that Lennard-Jones-type potentials, often used in 
atom-atom collision models, cause a downward shift of the zeros of Sl at rainbow 
energies, while at the same time its poles tend to move closer to the real I axis as the 
absorption increases. 

Next we shall derive an extended unitarity property for the S matrix, which will 
allow a one-to-one correspondence to be established between its zeros and its poles. 
Let $l(r) denote a particular regular solution of the Schrodinger equation with the 
potential U ( r )  replaced by U*(r), i.e. c$l(r) satisfies 

and the boundary condition 

&io) = 0 

and has the asymptotic form 

(3.14) 

(3.15) 

where is the scattering matrix element pertaining to the potential V * ( r ) .  One now 
observes, from (3.14) and (3. l ) ,  that the two regular solutions and q5 7 satisfy the 
same differential equation and, hence, must be proportional. To determine the factor 
of proportionality we can, for instance, compare the terms representing outgoing 
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waves in their asymptotic forms (3.16) and (3.3), respectively. We then find that 

di* (r) = -&+? (r), (3.17) 

which, with due regard also to the terms representing incoming waves, results in an 
extended unitary condition 

$1*s: = 1. (3.18) 

For real potentiais we obviously have $1 = SI,  so that (3.18) reduces to 

SI&? = 1. (3.19) 

An immediate consequence of (3.19) is that zeros and poles of SI produced by real 
potentials lie symmetrically about the real 1 axis, each pole at a certain position 
corresponding to a zero at the complex conjugate position, and vice versa. When 
complex potentials are employed we find instead 

Izero(U)  = [tole (U*) ,  (3.20) 

i.e. a zero produced by the potential U( r )  is located at the complex conjugate of the 
position of a pole produced by the complex conjugate potential U*(r). 

Finally we derive the well known reflection symmetry of SI with respect to the 
point 1 = -5, valid only for strongly singular complex potentials (e.g. of the Lennard- 
Jones type). For this class of potentials, the regular solution of (2.1), and thus the S 
matrix, can be directly continued to the left-half-plane Re  1 s -1, without violating 
the regularity of the solution at r = 0. Observing that equation (2.1) is invariant under 
the substitution 1 + -1 - 1, we find that dl  and 4- 1-1 are both regular solutions satisfying 
the same differential equation and, therefore, must be proportional. This implies that 
their asymptotic forms and hence also S1 and S-l-1 must be proportional as well. One 
easily verifies that 

s - I - ~  = exp[-i2.n(/ +t)]sI, (3.21) 

which is the desired reflection property of the S matrix. 

4. The elastic scattering amplitude 

Throughout the present section we use instead of 1 the complex variable A ,  related 
to I by 

(4.1) 1 A = I + z ,  

and transform the elastic scattering amplitude (1.1) with the aid of Poisson's sum 
formula (2.8), obtaining immediately the Poisson representation 

Here S ( h )  denotes the analytically continued scattering matrix element S I  and 
Ph-;(cos@) is the Legendre function of the first kind of complex degree (see the 
appendix). The alternative procedure of applying a Watson transform would be 
equivalent for our purpose (cf Nussenzweig 1969). However, the Poisson representa- 
tion (4.2) stays closer to the traditional semiclassical techniques (Berry and Mount 
1972). 
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Let us divide the sum in (4.2) into three parts, i.e. 

f(e) =fo+fl+f2 (4.3) 

(4.6) 

In (4.6) we have replaced the original sum over negative integers n by a sum over 
positive ones. 

To proceed further we shall assume that the scattering process to be studied belongs 
to  the category defined below. 

For the case under investigation we assume the following properties of the analytical 
function S(A) (see figure 1). 

( a )  S(A) is meromorphic with simple poles in the first quadrant (cf de Alfaro and 
Regge 1965). 

( b )  /S(A)/ s exp(-TIm A )  as lA 1 -+ +a along the imaginary axis, or arbitrarily close 
to this line (cf equation (3.5)). 

(c) S(A)+ l + O ( l / A )  as /A)++m to the right of a certain region containing the 
poles and zeros (see figure 1) .  
We merely state without proof that this category comprises scattering on strongly 
singular non-emittive potentials, e.g. of the Lennard-Jones type (see Dombey and 
Jones 1968, Brander 1966). 

The properties (a  1- ( c )  together with the properties of the Legendre functions 
listed in the appendix are sufficient for the present analysis of the scattering amplitude 
f(t9) at all angles except possibly t9 = 0 and T where special care is required. Let us 
study f o ,  f l  and f2 separately. 

The term f o  in (4.3), which in primitive semiclassical theories is taken as a basic 
approximation of f ( t 9 )  itself, can be treated as follows. Inserting equation (A.2) from 
the appendix into (4.4), we first obtain 

lom i "  1 (-1)" (1 -S(A))P,-;  (cos e)  exp(-2innA)A dA. 
- k  

. m  
1 1 

fo=- (1  -S(A))QL->; (cos 8)A dh +; lom ( 1  -S (h ) )Qy>;  (COS 8)h  dh. (4.7) k o  

The first of the integrals in (4.7) can be evaluated along a contour rL in the fourth 
quadrant (see figure l),  starting at the origin and terminating at infinity to the right 
of the zeros of S(A). On this contour the integral can be separated into two convergent 
parts, one of which can be evaluated along the negative imaginary axis, or, with the 
substitution A + -A ,  along the positive imaginary axis. We now have 
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To the last integral we add and subtract the finite contribution from a path along the 
positive imaginary axis, and form a contour integral along a curve C (see figure 11, 
which starts at + i a ,  circumvents the pole region and terminates at infinity to the right 
of it. The contour integral obtained is split into two parts, of which only the one 
containing S(A) gives a non-zero contribution, Finally, f o  takes the form 

S(A)Qr?; (COS 6)A dh QF?i (COS 8)A dh 

. .ix 

-L J k o  
S(A)Q(hC-); (COS 8)A dh. (4.9) 

Next we consider the term f l  given by (4.5). Adding and subtracting to each 
integral the finite contribution from a path along the positive imaginary axis, we get 

(4.10) 

where the order of summation and integration is reversed in the last integral and the 
identity 

1 exp(irrA) 1 3  
30 

1 (-l)m exp(2irmA) = -- 
n = l  2 COS T A  

I m 2 0 ,  A f 2 ,  5 , .  . . (4.11) 

has been utilised. The contour C in (4.10) is the same as before. In (4.10) the first 
integral separates into its two additive parts, the first of which yields zero contribution. 
The second integral in (4.10) is likewise divided into its two parts. To the second of 
these parts we add and subtract the convergent integral 

The term f l  now takes the form 

(4.12) 

Finally, in the expression (4.6) for fi we deform the path of integration to coincide 
with the negative imaginary axis and perform the sum over the integers n using 

m 1 exp(-irA ) 
( -1ln exp(-2in~A) = -- I m A s ~ , A # b , t ,  . . .  

fl=l 2 COSTA 
(4.13) 
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which yields 

exp(-iHA ) 

COSHA 
- A  dh 

i -ix 
f 2 =  -zl0 P ~ - ;  (cos e) 

. -Im 
1 exp(-iHA) +%IO s ( A ) P A - ; ( C O S @ ) -  A dh. 

COSHA 
(4.14) 

Making the substitution A + -A in the first of these integrals, we arrive at the formula 
. -ix exp(iHA ) 1 exp( -iHA ) 

A dh +- S(A)PA-i (COS e)  ~- A dh. 
i ia. 

2k lo cos T A  
fi = -G I, pA -; (cos e)  

COS HA 
(4.15) 

Here we have also utilised the property (A.3) as well as the symmetric nature of cos HA. 
By the insertion of (4.9), (4.12) and (4.15) into (4.3) and with the aid of (A.2), 

we find for f ( 6 )  

i 
k L  

S(A)Qi-?; (COS 8 ) A  dh -- S(A)Q:"; (COS 0)A dA 

i x  
k n = l  C 

-- (-l)q S(A)[Qi-?; (cos e)+Qrl;  (cos e)]exp(2in~h)h dh 

(4.16) 

where the contour r in the first integral is composed of the positive imaginary axis 
and the path rL and runs, suitably deformed, in the downward direction. According 
to (A.6), the last integral in (4.16) is identically zero. The last but one integral, which 
is evaluated along R e h  = O  and hence has the nature of a so-called background I ,  
say, can be put into the form 

(4.17) 

By virtue of the reflection property (3.23), this symmetry-type background integral, 
I, is identically zero for strongly singular potentials (e.g. of the Lennard-Jones type). 
However, since we have not explicitly assumed the potential to be strongly singular 
in the derivation of (4.16), the term (4.17) should be retained in the final formulae. 
Thus we find that the elastic scattering amplitude f ( 6 )  may be expressed in terms of 
two infinite sums of contour integrals and a symmetry-type background integral: 

n = O  n = O  

where I is given by (4.17) and where 

(4.18) 
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(4.20) 

dA rial. (4.21) 

The formulae (4.18)-(4.21) constitute an exact, modified version of the Poisson 
representation (4.2) of f(6).  We shall mention some advantages of (4.18) over (4.2), 
which are expected to be of great importance for developing accurate approximation 
schemes in heavy-particle scattering. 

(i) The terms with negative integers n are eliminated in (4.18). In existing semi- 
classical treatments they are neglected as being dynamically not allowed. 

(ii) The non-dynamical term in the Poisson integrals, due to the presence of the 
unscattered plane wave, is similarly removed. This is frequently done by using the 
closure relation for the Legendre polynomials in ( l . l ) ,  with the result that the 
integrands in (4.2) diverge as A + +CO. 

(iii) The new integrals are defined on infinite contours in the complex A plane. 
This point makes (4.18) well suited for a semiclassical trajectory approximation which 
takes into account complex saddles originating from classically forbidden events or 
from a complex physical potential. 

There is another important consequence of (iii) which we shall develop in some 
more detail here. The integrals in (4.20) and (4.21), which are defined along the 
contour C (see figure l ) ,  may, if convenient, be closed at infinity and evaluated as 
S-matrix residue sums. In this way the infinite sum of integrals in (4.18) can be 
resummed analytically. To see this, let us define an arbitrary infinite sum of such 
integrals, namely 

(4.22) 

where the subscript P refers to the contribution from the poles of S(A). If the procedure 
of closing the contour C is justified (cf Dombey and Jones 1968), we find 

T exp[i(2N, - l ) d m ]  fk!de) = (-1IN* - f r V , Q ~ ~ - ~  (COS e)  Am. k m = O  COS TA, 
(4.23) 

Here r ,  is the residue of S(A) at the pole A,,,. As a result, the elastic scattering 
amplitude takes the form 

(4.24) 

The integers N -  and N, in (4.24) may be chosen conveniently. For example, the 
choice N-=N+=oo would give us back (4.18), which was shown to be a modified 
Poisson representation (4.2). At the other extreme we can choose N- = 1 and N ,  = 0, 
the maximal pole representation, and with the aid of (A.2)-(A.5) regain the Regge 
pole representation (1 .3) .  Thereby we find that the background integral in (1.3) is 
identical to the sum of f b - ’ ( @ )  and I ,  the latter being zero if the S matrix satisfies the 
reflection symmetry (3.21). 

In the flexible complex angular momentum representation (4.24), the main result 
of this study, all choices of N- and N ,  will lead to exact results. However, the total 
number of significantly large terms in (4.24) may be quite different, initiating a need 
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for an ‘optimal’ representation of f ( 6 ) .  We shall not enter here into details of how 
this problem can be solved, but merely state some useful observations made on the 
convergence and magnitude of the residue terms only, as given by equation (4.23): 

(iv) fbyk- (6) becomes more strongly convergent (but possibly of smaller magnitude 
and hence of less importance) if the integer N -  is increased. Furthermore, the 
convergence depends on the scattering angle in such a way that smaller 6 are favoured. 

(v) fEk+ (6) becomes more strongly convergent (but possibly also of smaller magni- 
tude and hence of less importance) if the integer N,. is increased. Larger scattering 
angles 6 are favoured here. 

(vi)  Both residue sums become of equal magnitude if either N - = N -  and 6 
approaches the forward angle, or N -  = N ,  + 1 and 6 approaches the backward angle. 

5. Conclusion 

In this paper we have developed a complex angular momentum theory for treating 
atomic and molecular elastic collisions. The S matrix produced by complex potentials 
was defined for complex values of the angular momentum quantum number, and the 
distribution of its poles and zeros there was discussed without using Jost functions. 
An extended unitarity condition was found which displays an unique correspondence 
between poles and zeros. Finally we were able to derive a new flexible representation 
of the scattering amplitude, containing sums of contour integrals and S- matrix residues 
as well as two integer parameters which can be adjusted so as too minimise the total 
number of large terms. 

The representation is especially suited for a semiclassical (or semiquantal) analysis 
of low-energy differential cross sections, taking into account in a convenient way the 
contribution from possible resonances. 
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Appendix. Legendre functions 

The Legendre polynomials have a standard analytical continuation, based on the 
Legendre differential equation (Robin 1958). Let PA-; (cos 6)  and Q A - ;  (cos 6 )  denote 
the Legendre functions of the first and second kind, respectively, and let Qi-!; (cos 6 )  
and QF?; (cos 6 )  be defined by 

(A. 1) ) 
2i Qrl; (COS @)=I PA-;  (COS 6)f-QA-t (COS 6 . ‘i IT 

The following relations are given by Robin (1958) and Nussenzweig (1969): 

(A.2) PA-; (COS 6)  = (2i-J; (COS 6 )  + Qr!; (cos 6 )  

PA-; (cos 6)=P-A (cos 6 )  (A.3) 
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PA-; (-cos e) = i exp(-irA)PA-; (cos 0) - 2i cos rAQi-2; (cos e )  
PA-i (-cos e)  = -i exp(irA)P,-; (cos e)  +2i  cos T A Q ~ ? ;  (cos e). 

(A.4) 

(AS) 

With the aid of (A.3)-(A.5) one may show the useful identity 

exp(irA)PA-; (cos e )  - (QY$ (cos e)  + Q!.->-; (cos @))cos T A  = 0. (A.6) 
Both functions Qi-2; (cos e) and QF?i (cos e) have poles in the A plane at negative 
half-integer A values (= 1 ++). These poles cancel and are not present in PA-; (cos e).  
Furthermore, for 8 not too close to 0 and r, the asymptotic (/Ale >> 1) behaviour of 
the functions Q ( r )  is given by 

(1 + O(A -’)). 
exp[ i i(A0 - tr)] 

( 2 r A  sin 8)”* 
Qr?; (COS 0)  = (A.7) 
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